Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
JACC Basic Transl Sci ; 9(3): 414-439, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38559627

RESUMO

Fundamentally, the heart needs to generate sufficient force and power output to dynamically meet the needs of the body. Cardiomyocytes contain specialized structures referred to as sarcomeres that power and regulate contraction. Disruption of sarcomeric function or regulation impairs contractility and leads to cardiomyopathies and heart failure. Basic, translational, and clinical studies have adapted numerous methods to assess cardiac contraction in a variety of pathophysiological contexts. These tools measure aspects of cardiac contraction at different scales ranging from single molecules to whole organisms. Moreover, these studies have revealed new pathogenic mechanisms of heart disease leading to the development of novel therapies targeting contractility. In this review, the authors explore the breadth of tools available for studying cardiac contractile function across scales, discuss their strengths and limitations, highlight new insights into cardiac physiology and pathophysiology, and describe how these insights can be harnessed for therapeutic candidate development and translational.

2.
bioRxiv ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38559055

RESUMO

Novel immune checkpoint therapeutics including CD40 agonists have tremendous promise to elicit antitumor responses in patients resistant to current therapies. Conventional immune checkpoint inhibitors (PD-1/PD-L1, CTLA-4 antagonists) are associated with serious adverse cardiac events including life-threatening myocarditis. However, little is known regarding the potential for CD40 agonists to trigger myocardial inflammation or myocarditis. Here, we leveraged genetic mouse models, single cell sequencing, and cell depletion studies to demonstrate that an anti-CD40 agonist antibody reshapes the cardiac immune landscape through activation of CCR2 + macrophages and subsequent recruitment of effector memory CD8 T-cells. We identify a positive feedback loop between CCR2 + macrophages and CD8 T-cells driven by IL12b, TNF, and IFN-γ signaling that promotes myocardial inflammation and show that prior exposure to CD40 agonists sensitizes the heart to secondary insults and accelerates LV remodeling. Collectively, these findings highlight the potential for CD40 agonists to promote myocardial inflammation and potentiate heart failure pathogenesis.

3.
bioRxiv ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38645235

RESUMO

Familial dilated cardiomyopathy (DCM) is frequently caused by autosomal dominant point mutations in genes involved in diverse cellular processes, including sarcomeric contraction. While patient studies have defined the genetic landscape of DCM, genetics are not currently used in patient care, and patients receive similar treatments regardless of the underlying mutation. It has been suggested that a precision medicine approach based on the molecular mechanism of the underlying mutation could improve outcomes; however, realizing this approach has been challenging due to difficulties linking genotype and phenotype and then leveraging this information to identify therapeutic approaches. Here, we used multiscale experimental and computational approaches to test whether knowledge of molecular mechanism could be harnessed to connect genotype, phenotype, and drug response for a DCM mutation in troponin T, deletion of K210. Previously, we showed that at the molecular scale, the mutation reduces thin filament activation. Here, we used computational modeling of this molecular defect to predict that the mutant will reduce cellular and tissue contractility, and we validated this prediction in human cardiomyocytes and engineered heart tissues. We then used our knowledge of molecular mechanism to computationally model the effects of a small molecule that can activate the thin filament. We demonstrate experimentally that the modeling correctly predicts that the small molecule can partially rescue systolic dysfunction at the expense of diastolic function. Taken together, our results demonstrate how molecular mechanism can be harnessed to connect genotype and phenotype and inspire strategies to optimize mechanism-based therapeutics for DCM. Significance statement: Dilated cardiomyopathy (DCM), a leading cause of heart failure, is characterized by the inability of the heart to perfuse the body at normal filling pressures. There are multiple causes of DCM, including point mutations in sarcomeric proteins, but most patients receive similar courses of treatment, regardless of the underlying cause of the DCM. Many patients remain unserved by current therapies, and there is a need for new approaches. Here, we use multiscale experimental and computational approaches to demonstrate how knowledge of molecular mechanism can be harnessed to accurately predict the effects of a patient-specific mutation and responses to presumptive therapeutics. Our approach lays the foundation for a precision medicine approach to DCM.

4.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559046

RESUMO

Skeletal muscle actin (ACTA1) mutations are a prevalent cause of skeletal myopathies consistent with ACTA1's high expression in skeletal muscle. Rare de novo mutations in ACTA1 associated with combined cardiac and skeletal myopathies have been reported, but ACTA1 represents only ~20% of the total actin pool in cardiomyocytes, making its role in cardiomyopathy controversial. Here we demonstrate how a mutation in an actin isoform expressed at low levels in cardiomyocytes can cause cardiomyopathy by focusing on a unique ACTA1 mutation, R256H. We previously identified this mutation in multiple family members with dilated cardiomyopathy (DCM), who had reduced systolic function without clinical skeletal myopathy. Using a battery of multiscale biophysical tools, we show that R256H has potent functional effects on ACTA1 function at the molecular scale and in human cardiomyocytes. Importantly, we demonstrate that R256H acts in a dominant manner, where the incorporation of small amounts of mutant protein into thin filaments is sufficient to disrupt molecular contractility, and that this effect is dependent on the presence of troponin and tropomyosin. To understand the structural basis of this change in regulation, we resolved a structure of R256H filaments using Cryo-EM, and we see alterations in actin's structure that have the potential to disrupt interactions with tropomyosin. Finally, we show that ACTA1R256H/+ human induced pluripotent stem cell cardiomyocytes demonstrate reduced contractility and sarcomeric disorganization. Taken together, we demonstrate that R256H has multiple effects on ACTA1 function that are sufficient to cause reduced contractility and establish a likely causative relationship between ACTA1 R256H and clinical cardiomyopathy.

5.
bioRxiv ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38659908

RESUMO

Mechanical unloading and circulatory support with left ventricular assist devices (LVADs) mediate significant myocardial improvement in a subset of advanced heart failure (HF) patients. The clinical and biological phenomena associated with cardiac recovery are under intensive investigation. Left ventricular (LV) apical tissue, alongside clinical data, were collected from HF patients at the time of LVAD implantation (n=208). RNA was isolated and mRNA transcripts were identified through RNA sequencing and confirmed with RT-qPCR. To our knowledge this is the first study to combine transcriptomic and clinical data to derive predictors of myocardial recovery. We used a bioinformatic approach to integrate 59 clinical variables and 22,373 mRNA transcripts at the time of LVAD implantation for the prediction of post-LVAD myocardial recovery defined as LV ejection fraction (LVEF) ≥40% and LV end-diastolic diameter (LVEDD) ≤5.9cm, as well as functional and structural LV improvement independently by using LVEF and LVEDD as continuous variables, respectively. To substantiate the predicted variables, we used a multi-model approach with logistic and linear regressions. Combining RNA and clinical data resulted in a gradient boosted model with 80 features achieving an AUC of 0.731±0.15 for predicting myocardial recovery. Variables associated with myocardial recovery from a clinical standpoint included HF duration, pre-LVAD LVEF, LVEDD, and HF pharmacologic therapy, and LRRN4CL (ligand binding and programmed cell death) from a biological standpoint. Our findings could have diagnostic, prognostic, and therapeutic implications for advanced HF patients, and inform the care of the broader HF population.

6.
J Clin Invest ; 134(6)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38488011

RESUMO

Ischemia/reperfusion injury-mediated (IRI-mediated) primary graft dysfunction (PGD) adversely affects both short- and long-term outcomes after lung transplantation, a procedure that remains the only treatment option for patients suffering from end-stage respiratory failure. While B cells are known to regulate adaptive immune responses, their role in lung IRI is not well understood. Here, we demonstrated by intravital imaging that B cells are rapidly recruited to injured lungs, where they extravasate into the parenchyma. Using hilar clamping and transplant models, we observed that lung-infiltrating B cells produce the monocyte chemokine CCL7 in a TLR4-TRIF-dependent fashion, a critical step contributing to classical monocyte (CM) recruitment and subsequent neutrophil extravasation, resulting in worse lung function. We found that synergistic BCR-TLR4 activation on B cells is required for the recruitment of CMs to the injured lung. Finally, we corroborated our findings in reperfused human lungs, in which we observed a correlation between B cell infiltration and CM recruitment after transplantation. This study describes a role for B cells as critical orchestrators of lung IRI. As B cells can be depleted with currently available agents, our study provides a rationale for clinical trials investigating B cell-targeting therapies.


Assuntos
Monócitos , Traumatismo por Reperfusão , Humanos , Receptor 4 Toll-Like/genética , Pulmão , Isquemia , Receptores de Antígenos de Linfócitos B
7.
Circulation ; 149(1): 48-66, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37746718

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs), antibodies targeting PD-1 (programmed cell death protein 1)/PD-L1 (programmed death-ligand 1) or CTLA4 (cytotoxic T-lymphocyte-associated protein 4), have revolutionized cancer management but are associated with devastating immune-related adverse events including myocarditis. The main risk factor for ICI myocarditis is the use of combination PD-1 and CTLA4 inhibition. ICI myocarditis is often fulminant and is pathologically characterized by myocardial infiltration of T lymphocytes and macrophages. Although much has been learned about the role of T-cells in ICI myocarditis, little is understood about the identity, transcriptional diversity, and functions of infiltrating macrophages. METHODS: We used an established murine ICI myocarditis model (Ctla4+/-Pdcd1-/- mice) to explore the cardiac immune landscape using single-cell RNA-sequencing, immunostaining, flow cytometry, in situ RNA hybridization, molecular imaging, and antibody neutralization studies. RESULTS: We observed marked increases in CCR2 (C-C chemokine receptor type 2)+ monocyte-derived macrophages and CD8+ T-cells in this model. The macrophage compartment was heterogeneous and displayed marked enrichment in an inflammatory CCR2+ subpopulation highly expressing Cxcl9 (chemokine [C-X-C motif] ligand 9), Cxcl10 (chemokine [C-X-C motif] ligand 10), Gbp2b (interferon-induced guanylate-binding protein 2b), and Fcgr4 (Fc receptor, IgG, low affinity IV) that originated from CCR2+ monocytes. It is important that a similar macrophage population expressing CXCL9, CXCL10, and CD16α (human homologue of mouse FcgR4) was expanded in patients with ICI myocarditis. In silico prediction of cell-cell communication suggested interactions between T-cells and Cxcl9+Cxcl10+ macrophages via IFN-γ (interferon gamma) and CXCR3 (CXC chemokine receptor 3) signaling pathways. Depleting CD8+ T-cells or macrophages and blockade of IFN-γ signaling blunted the expansion of Cxcl9+Cxcl10+ macrophages in the heart and attenuated myocarditis, suggesting that this interaction was necessary for disease pathogenesis. CONCLUSIONS: These data demonstrate that ICI myocarditis is associated with the expansion of a specific population of IFN-γ-induced inflammatory macrophages and suggest the possibility that IFN-γ blockade may be considered as a treatment option for this devastating condition.


Assuntos
Inibidores de Checkpoint Imunológico , Miocardite , Humanos , Camundongos , Animais , Inibidores de Checkpoint Imunológico/efeitos adversos , Linfócitos T CD8-Positivos , Miocardite/induzido quimicamente , Miocardite/metabolismo , Receptor de Morte Celular Programada 1 , Antígeno CTLA-4 , Ligantes , Quimiocinas/metabolismo , Macrófagos/metabolismo , RNA/metabolismo
8.
Am J Transplant ; 24(2): 280-292, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37619922

RESUMO

The presence of bronchus-associated lymphoid tissue (BALT) in donor lungs has been suggested to accelerate graft rejection after lung transplantation. Although chronic smoke exposure can induce BALT formation, the impact of donor cigarette use on alloimmune responses after lung transplantation is not well understood. Here, we show that smoking-induced BALT in mouse donor lungs contains Foxp3+ T cells and undergoes dynamic restructuring after transplantation, including recruitment of recipient-derived leukocytes to areas of pre-existing lymphoid follicles and replacement of graft-resident donor cells. Our findings from mouse and human lung transplant data support the notion that a donor's smoking history does not predispose to acute cellular rejection or prevent the establishment of allograft acceptance with comparable outcomes to nonsmoking donors. Thus, our work indicates that BALT in donor lungs is plastic in nature and may have important implications for modulating proinflammatory or tolerogenic immune responses following transplantation.


Assuntos
Transplante de Pulmão , Tecido Linfoide , Camundongos , Humanos , Animais , Transplante de Pulmão/efeitos adversos , Tolerância Imunológica , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/prevenção & controle , Pulmão , Brônquios , Fumar
9.
Transplantation ; 108(2): 539-544, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37638881

RESUMO

BACKGROUND: Antibody-mediated rejection (AMR) remains a significant cause of heart transplant mortality with few effective therapies. METHODS: This study aimed to describe initial experience of using interleukin-6 receptor blockade with tocilizumab in the treatment of acute cardiac AMR at Barnes-Jewish Hospital/Washington University Transplant Center from July 2017 to May 2021 (n = 7). Clinical, echocardiographic, and serum alloantibody data were analyzed before and after treatment. RESULTS: All participants demonstrated marked improvement in functional status. Echocardiographic data following 4-6 mo of tocilizumab revealed significant improvements in biventricular systolic function for all participants. Consistent reductions in donor-specific HLA or angiotensin type I receptor antibodies were not observed, suggesting that tocilizumab may act downstream of antibody production. No patient experienced drug-related complications that necessitated discontinuation of therapy. CONCLUSIONS: These findings provide initial insights into the safety and efficacy of interleukin-6 receptor blockade in the treatment of cardiac AMR and support the design of larger prospective studies.


Assuntos
Transplante de Rim , Humanos , Estudos Prospectivos , Estudos de Viabilidade , Antígenos HLA , Isoanticorpos , Receptores de Interleucina-6 , Rejeição de Enxerto/etiologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-37993313

RESUMO

Cardiac macrophages are essential mediators of cardiac development, tissue homeostasis, and response to injury. Cell-intrinsic shifts in metabolism and availability of metabolites regulate macrophage function. The human and mouse heart contain a heterogeneous compilation of cardiac macrophages that are derived from at least two distinct lineages. In this review, we detail the unique functional roles and metabolic profiles of tissue-resident and monocyte-derived cardiac macrophages during embryonic development and adult tissue homeostasis and in response to pathologic and physiologic stressors. We discuss the metabolic preferences of each macrophage lineage and how metabolism influences monocyte fate specification. Finally, we highlight the contribution of cardiac macrophages and derived metabolites on cell-cell communication, metabolic health, and disease pathogenesis.

11.
J Nucl Med ; 64(Suppl 2): 39S-48S, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37918845

RESUMO

Growing evidence implicates the immune system as a critical mediator of cardiovascular disease progression and a viable therapeutic target. Increased inflammatory cell activity is seen in the full spectrum of disorders from early-stage atherosclerosis through myocardial infarction, cardiomyopathy, and chronic heart failure. Although therapeutic strategies to modulate inflammation have shown promise in preclinical animal models, efficacy in patients has been modest owing in part to the variable severity of inflammation across individuals. The diverse leukocyte subpopulations involved in different aspects of heart disease pose a challenge to effective therapy, wherein adverse and beneficial aspects of inflammation require appropriate balance. Noninvasive molecular imaging enables tissue-level interrogation of inflammatory cells in the heart and vasculature to provide mechanistic and temporal insights into disease progression. Although clinical imaging has relied on 18F-FDG as a nonselective and crude marker of inflammatory cell activity, new imaging probes targeting cell surface markers of different leukocyte subpopulations present the opportunity to visualize and quantify distinct phases of cardiac and vessel wall inflammation. Similarly, therapies are evolving to more effectively isolate adverse from beneficial cell populations. This parallel development of immunocardiology and molecular imaging provides the opportunity to refine treatments using imaging guidance, building toward mechanism-based precision medicine. Here, we discuss progress in molecular imaging of immune cells in cardiology from use of 18F-FDG in the past to the present expansion of the radiotracer arsenal and then to a future theranostic paradigm of tracer-therapy compound pairs with shared targets. We then highlight the critical experiments required to advance the field from preclinical concept to clinical reality.


Assuntos
Fluordesoxiglucose F18 , Infarto do Miocárdio , Animais , Humanos , Fluordesoxiglucose F18/uso terapêutico , Inflamação/diagnóstico por imagem , Coração , Imagem Molecular
12.
Cell Immunol ; 393-394: 104774, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37839157

RESUMO

Transplantation is a life-saving therapy for patients with end-stage organ disease. Successful outcomes after transplantation require mitigation of the post-transplant inflammatory response, limiting alloreactivity, and prevention of organ rejection. Traditional immunosuppressive regimens aim to dampen the adaptive immune response; however, recent studies have shown the feasibility and efficacy of targeting the innate immune response. Necroinflammation initiated by donor organ cell death is implicated as a critical mediator of primary graft dysfunction, acute rejection, and chronic rejection. Ferroptosis is a form of regulated cell death that triggers post-transplantation inflammation and drives the activation of both innate and adaptive immune cells. There is a growing acceptance of the clinical relevance of ferroptosis to solid organ transplantation. Modulating ferroptosis may be a potentially promising strategy to reduce complications after organ transplantation.


Assuntos
Ferroptose , Transplante de Órgãos , Humanos , Rejeição de Enxerto , Transplante Homólogo , Imunidade Inata
13.
Biol Open ; 12(7)2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37746814

RESUMO

Intellectual disability is a neurodevelopmental disorder that affects 2-3% of the general population. Syndromic forms of intellectual disability frequently have a genetic basis and are often accompanied by additional developmental anomalies. Pathogenic variants in components of TATA-binding protein associated factors (TAFs) have recently been identified in a subset of patients with intellectual disability, craniofacial hypoplasia, and congenital heart disease. This syndrome has been termed as a TAFopathy and includes mutations in TATA binding protein (TBP), TAF1, TAF2, and TAF6. The underlying mechanism by which TAFopathies give rise to neurodevelopmental, craniofacial, and cardiac abnormalities remains to be defined. Through a forward genetic screen in zebrafish, we have recovered a recessive mutant phenotype characterized by craniofacial hypoplasia, ventricular hypoplasia, heart failure at 96 h post-fertilization and lethality, and show it is caused by a nonsense mutation in taf5. CRISPR/CAS9 mediated gene editing revealed that these defects where phenocopied by mutations in taf1 and taf5. Mechanistically, taf5-/- zebrafish displayed misregulation in metabolic gene expression and metabolism as evidenced by RNA sequencing, respiration assays, and metabolite studies. Collectively, these findings suggest that the TAF complex may contribute to neurologic, craniofacial, and cardiac development through regulation of metabolism.


Assuntos
Anormalidades Craniofaciais , Fatores Associados à Proteína de Ligação a TATA , Proteínas de Peixe-Zebra , Animais , Anormalidades Craniofaciais/genética , Coração , Deficiência Intelectual , Mutação , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
14.
Nat Cardiovasc Res ; 2(4): 399-416, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37583573

RESUMO

Recovery of cardiac function is the holy grail of heart failure therapy yet is infrequently observed and remains poorly understood. In this study, we performed single-nucleus RNA sequencing from patients with heart failure who recovered left ventricular systolic function after left ventricular assist device implantation, patients who did not recover and non-diseased donors. We identified cell-specific transcriptional signatures of recovery, most prominently in macrophages and fibroblasts. Within these cell types, inflammatory signatures were negative predictors of recovery, and downregulation of RUNX1 was associated with recovery. In silico perturbation of RUNX1 in macrophages and fibroblasts recapitulated the transcriptional state of recovery. Cardiac recovery mediated by BET inhibition in mice led to decreased macrophage and fibroblast Runx1 expression and diminished chromatin accessibility within a Runx1 intronic peak and acquisition of human recovery signatures. These findings suggest that cardiac recovery is a unique biological state and identify RUNX1 as a possible therapeutic target to facilitate cardiac recovery.

15.
Proc Natl Acad Sci U S A ; 120(31): e2302938120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487095

RESUMO

Neutrophils are the primary cell type involved in lung ischemia-reperfusion injury (IRI), which remains a frequent and morbid complication after organ transplantation. Endogenous lipid mediators that become activated during acute inflammation-resolution have gained increasing recognition for their protective role(s) in promoting the restoration of homeostasis, but their influence on early immune responses following transplantation remains to be uncovered. Resolvin D1, 7S,8R,17S-trihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid (RvD1), is a potent stereoselective mediator that exhibits proresolving and anti-inflammatory actions in the setting of tissue injury. Here, using metabololipidomics, we demonstrate that endogenous proresolving mediators including RvD1 are increased in human and murine lung grafts immediately following transplantation. In mouse grafts, we observe lipid mediator class switching early after reperfusion. We use intravital two-photon microscopy to reveal that RvD1 treatment significantly limits early neutrophil infiltration and swarming, thereby ameliorating early graft dysfunction in transplanted syngeneic lungs subjected to severe IRI. Through integrated analysis of single-cell RNA sequencing data of donor and recipient immune cells from lung grafts, we identify transcriptomic changes induced by RvD1. These results support a role for RvD1 as a potent modality for preventing early neutrophil-mediated tissue damage after lung IRI that may be therapeutic in the clinics.


Assuntos
Ácidos Docosa-Hexaenoicos , Transplante de Órgãos , Humanos , Animais , Camundongos , Neutrófilos , Pulmão
16.
Sci Immunol ; 8(84): eadd7446, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37294749

RESUMO

The recruitment of monocytes and their differentiation into immunosuppressive cells is associated with the low efficacy of preclinical nonconformal radiotherapy (RT) for tumors. However, nonconformal RT (non-CRT) does not mimic clinical practice, and little is known about the role of monocytes after RT modes used in patients, such as conformal RT (CRT). Here, we investigated the acute immune response induced by after CRT. Contrary to non-CRT approaches, we found that CRT induces a rapid and robust recruitment of monocytes to the tumor that minimally differentiate into tumor-associated macrophages or dendritic cells but instead up-regulate major histocompatibility complex II and costimulatory molecules. We found that these large numbers of infiltrating monocytes are responsible for activating effector polyfunctional CD8+ tumor-infiltrating lymphocytes that reduce tumor burden. Mechanistically, we show that monocyte-derived type I interferon is pivotal in promoting monocyte accumulation and immunostimulatory function in a positive feedback loop. We also demonstrate that monocyte accumulation in the tumor microenvironment is hindered when RT inadvertently affects healthy tissues, as occurs in non-CRT. Our results unravel the immunostimulatory function of monocytes during clinically relevant modes of RT and demonstrate that limiting the exposure of healthy tissues to radiation has a positive therapeutic effect on the overall antitumor immune response.


Assuntos
Interferon Tipo I , Neoplasias , Humanos , Monócitos , Neoplasias/radioterapia , Diferenciação Celular , Interferon Tipo I/farmacologia , Linfócitos do Interstício Tumoral , Microambiente Tumoral
17.
bioRxiv ; 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37162929

RESUMO

Background: Immune checkpoint inhibitors (ICIs), antibodies targeting PD-1/PD-L1 or CTLA4 have revolutionized cancer management but are associated with devastating immune-related adverse events (irAEs) including myocarditis. The main risk factor for ICI myocarditis is the use of combination PD-1 and CTLA4 inhibition. ICI-myocarditis is often fulminant and is pathologically characterized by myocardial infiltration of T lymphocytes and macrophages. While much has been learned regarding the role of T-cells in ICI-myocarditis, little is understood regarding the identity, transcriptional diversity, and functions of infiltrating macrophages. Methods: We employed an established murine ICI myocarditis model ( Ctla4 +/- Pdcd1 -/- mice) to explore the cardiac immune landscape using single-cell RNA-sequencing, immunostaining, flow cytometry, in situ RNA hybridization and molecular imaging and antibody neutralization studies. Results: We observed marked increases in CCR2 + monocyte-derived macrophages and CD8 + T-cells in this model. The macrophage compartment was heterogeneous and displayed marked enrichment in an inflammatory CCR2 + subpopulation highly expressing Cxcl9 , Cxcl10 , Gbp2b , and Fcgr4 that originated from CCR2 + monocytes. Importantly, a similar macrophage population expressing CXCL9 , CXCL10 , and CD16α (human homologue of mouse FcgR4) was found selectively expanded in patients with ICI myocarditis compared to other forms of heart failure and myocarditis. In silico prediction of cell-cell communication suggested interactions between T-cells and Cxcl9 + Cxcl10 + macrophages via IFN-γ and CXCR3 signaling pathways. Depleting CD8 + T-cells, macrophages, and blockade of IFN-γ signaling blunted the expansion of Cxcl9 + Cxcl10 + macrophages in the heart and attenuated myocarditis suggesting that this interaction was necessary for disease pathogenesis. Conclusion: These data demonstrate that ICI-myocarditis is associated with the expansion of a specific population of IFN-γ induced inflammatory macrophages and suggest the possibility that IFN-γ blockade may be considered as a treatment option for this devastating condition.

18.
Cardiooncology ; 9(1): 14, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36915213

RESUMO

BACKGROUND: Immune checkpoint inhibitor (ICI) myocarditis is associated with high morbidity and mortality. While endomyocardial biopsy (EMB) is considered a gold standard for diagnosis, the sensitivity of EMB is not well defined. Additionally, the pathological features that correlate with the clinical diagnosis of ICI-associated myocarditis remain incompletely understood. METHODS: We retrospectively identified and reviewed the clinicopathological features of 26 patients with suspected ICI-associated myocarditis based on institutional major and minor criteria. Seventeen of these patients underwent EMB, and the histopathological features were assessed by routine hematoxylin and eosin (H&E) staining and immunohistochemical (IHC) staining for CD68, a macrophage marker. RESULTS: Only 2/17 EMBs obtained from patients with suspected ICI myocarditis satisfied the Dallas criteria. Supplemental IHC staining and quantification of CD68+ macrophages identified an additional 7 patients with pathological features of myocardial inflammation (> 50 CD68+ cells/HPF). Macrophage abundance positively correlated with serum Troponin I (P = 0.010) and NT-proBNP (N-terminal pro-brain natriuretic peptide, P = 0.047) concentration. Inclusion of CD68 IHC could have potentially changed the certainty of the diagnosis of ICI-associated myocarditis to definite in 6/17 cases. CONCLUSIONS: While the Dallas criteria can identify a subset of ICI-associated myocarditis patients, quantification of macrophage abundance may expand the diagnostic role of EMB. Failure to meet the traditional Dallas Criteria should not exclude the diagnosis of myocarditis.

19.
J Am Heart Assoc ; 12(4): e028442, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36752267

RESUMO

Background Viral myocarditis is characterized by leukocyte infiltration of the heart and cardiomyocyte death. We recently identified C-C chemokine ligand (CCL) 17 as a proinflammatory effector of C-C chemokine receptor 2-positive macrophages and dendritic cells that are recruited to the heart and contribute to adverse left ventricular remodeling following myocardial infarction and pressure overload. Methods and Results Mouse encephalomyocarditis virus was used to investigate the function of CCL17 in a viral myocarditis model. Ccl17Gfp reporter and knockout mice were used to identify the cell types that express CCL17 and delineate the functional importance of CCL17 in encephalomyocarditis virus clearance and myocardial inflammation. Cardiac CCL17 was expressed in C-C chemokine receptor 2-positive macrophages and dendritic cells following encephalomyocarditis virus infection. Colony-stimulating factor 2 (granulocyte-macrophage colony-stimulating factor) signaling was identified as a key regulator of CCL17 expression. Ccl17 deletion resulted in impaired encephalomyocarditis virus clearance, increased cardiomyocyte death, and higher mortality during infection early stage, and aggravated hypertrophy and fibrotic responses in infection long-term stage. An increased abundance of regulatory T cells was detected in the myocardium of injured Ccl17-deficient mice. Depletion of regulatory T cells in Ccl17-deficient mice abrogated the detrimental role of CCL17 deletion by restoring interferon signaling. Conclusions Collectively, these findings identify CCL17 as an important mediator of the host immune response during cardiac viral infection early stage and suggest that CCL17 targeted therapies should be avoided in acute viral myocarditis.


Assuntos
Miocardite , Viroses , Camundongos , Animais , Miocardite/genética , Miocardite/prevenção & controle , Linfócitos T Reguladores , Macrófagos/metabolismo , Camundongos Knockout , Receptores de Quimiocinas/metabolismo , Quimiocina CCL17/metabolismo
20.
Res Sq ; 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36747878

RESUMO

Inflammation and tissue fibrosis co-exist and are causally linked to organ dysfunction. However, the molecular mechanisms driving immune-fibroblast crosstalk in human cardiac disease remains unexplored and there are currently no therapeutics to target fibrosis. Here, we performed multi-omic single-cell gene expression, epitope mapping, and chromatin accessibility profiling in 38 donors, acutely infarcted, and chronically failing human hearts. We identified a disease-associated fibroblast trajectory marked by cell surface expression of fibroblast activator protein (FAP), which diverged into distinct myofibroblasts and pro-fibrotic fibroblast populations, the latter resembling matrifibrocytes. Pro-fibrotic fibroblasts were transcriptionally similar to cancer associated fibroblasts and expressed high levels of collagens and periostin (POSTN), thymocyte differentiation antigen 1 (THY-1), and endothelin receptor A (EDNRA) predicted to be driven by a RUNX1 gene regulatory network. We assessed the applicability of experimental systems to model tissue fibrosis and demonstrated that 3 different in vivo mouse models of cardiac injury were superior compared to cultured human heart and dermal fibroblasts in recapitulating the human disease phenotype. Ligand-receptor analysis and spatial transcriptomics predicted that interactions between C-C chemokine receptor type 2 (CCR2) macrophages and fibroblasts mediated by interleukin 1 beta (IL-1ß) signaling drove the emergence of pro-fibrotic fibroblasts within spatially defined niches. This concept was validated through in silico transcription factor perturbation and in vivo inhibition of IL-1ß signaling in fibroblasts where we observed reduced pro-fibrotic fibroblasts, preferential differentiation of fibroblasts towards myofibroblasts, and reduced cardiac fibrosis. Herein, we show a subset of macrophages signal to fibroblasts via IL-1ß and rewire their gene regulatory network and differentiation trajectory towards a pro-fibrotic fibroblast phenotype. These findings highlight the broader therapeutic potential of targeting inflammation to treat tissue fibrosis and restore organ function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...